Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

H. Mahalakshmi, ${ }^{\text {a }}$ Vimal K. Jain ${ }^{\text {a }}$ and Edward R. T. Tiekink ${ }^{{ }^{\text {* }}}$ *

${ }^{\mathrm{a}}$ Novel Materials and Structural Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India, and ${ }^{\mathbf{b}}$ Department of Chemistry, National University of Singapore, 117543,Singapore

Correspondence e-mail: chmtert@nus.edu.sg

Key indicators

Single-crystal X-ray study
$T=223 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.035$
$w R$ factor $=0.089$
Data-to-parameter ratio $=22.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Tri(2-thienyl)arsine oxide

The title compound, $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{AsOS}_{3}$, has a mirror plane so that one thienyl group as well as the As and O atoms lie on that plane. The As atom exists in a distorted tetrahedral geometry with a range of angles of 107.73 (8) to $112.82(13)^{\circ}$, with an $\mathrm{As}=\mathrm{O}$ bond distance of 1.648 (2) \AA and $\mathrm{As}-\mathrm{C}$ distances of 1.893 (3)-1.895 (2) A.

Comment

The title compound, $\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right)_{3} \mathrm{AsO}$, (I), has crystallographically imposed mirror symmetry so that the arsenic and O atoms and one thienyl group lie on the plane (Fig. 1). The As atom exists in a distorted tetrahedral geometry with a range of bond angles of 107.73 (8) to 112.82 (13) ${ }^{\circ}$. The wider angles involve the O atom (Table 1). The pattern in geometric parameters found in (I) matches closely those found in related structures viz. $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{As}=\mathrm{O}$ (Shao et al., 1982) and the triclinic and hexagonal polymorphs of $\left(p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{As}=\mathrm{O}$ (Belsky \& Zavodnik, 1984). The dihedral angle between the thienyl ring lying on the mirror plane and the independent ring is $54.86(9)^{\circ}$ and that between the two symmetry-related rings is $70.28(9)^{\circ}$. An analysis by PLATON (Spek, 2000) suggested $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. The closest $\mathrm{C}-\mathrm{H} \cdots \pi$ contact of $2.78 \AA$ occurs between $\mathrm{C} 6-\mathrm{H}$ and the ring centroid of the thienyl ring lying on the mirror plane (symmetry operation: $1-x,-\frac{1}{2}+y, 1-z$), implying that this ring is involved in two such interactions; these are aligned along the b direction. The O atom lies in a pocket defined by three H atoms from a translationally related molecule (along c) so that $\mathrm{C} 4-\mathrm{H} \cdots \mathrm{O} 1$ is $2.40 \AA$ and $\mathrm{C} 8-\mathrm{H} \cdots \mathrm{O} 1$ is $2.53 \AA$ (twice).

(I)

Experimental

$\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right)_{3} \mathrm{As}$: To an ethereal solution of 2-thienylmagnesium bromide, $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{SMgBr}$ [prepared from Mg turnings ($4.7 \mathrm{~g}, 0.19 \mathrm{~mol}$) and $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{SBr}$ ($31.90 \mathrm{~g}, 19.0 \mathrm{ml}, 0.19 \mathrm{~mol}$) in 300 ml ether], a solution of $\mathrm{AsCl}_{3}(9.0 \mathrm{~g}, 0.05 \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}$ at 273 K was added over a period of 2 h (Etienne, 1949; Ramsden, 1960). The reaction mixture was stirred at room temperature for 3 h followed by refluxing for 1 h . The reactants were cooled to 273 K and treated with deoxygenated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(80-100 \mathrm{ml})$. The ether layer was separated,

Received 15 November 2001 Accepted 16 November 2001 Online 24 November 2001

Figure 1
Molecular structure and crystallographic numbering scheme for (I); displacement ellipsoids are shown at the 50% probability level (Johnson, 1976).
dried over CaCl_{2} and passed through a Florisil column. The solvent was evaporated in vacuo leaving behind a yellow liquid, which was distilled under vacuum to give a pale yellow oil in 98% yield; b.p. 423$433 \mathrm{~K} / 0.4 \mathrm{~mm} \mathrm{Hg}$. Analysis for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~S}_{3}$ As: Calcd: C 44.4, H 2.8%; Found C 43.8, H 2.4%. IR: 1653 (w), 1596 ($v w$), 1539 ($v w$), 1497 ($v w$), 1461 (s), 1401 (s), 1377 (m), 1330 (m), 1215 ($v s$), 1080 (m), 1050 (w), $969(v s), 900(v w), 847(v s), 830(s), 785(v w), 743(s), 703(v s), 628$ $(v w), 568(w), 476(s), 305(s), 279(v w), 227(v w) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} \delta: 7.24$ (dd, $3.3,4 \mathrm{~Hz}, \mathrm{H}-4$); 7.45 (d, $3.3 \mathrm{~Hz}, \mathrm{H}-3$); 7.66 (d, $3.8 \mathrm{~Hz}, \mathrm{H}-5) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR in $\mathrm{CDCl}_{3} \delta: 127.7$ [C-4]; 131.0 [C-3]; 134.3 [C-5]; 138.3 [C-2].
$\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right)_{3}$ AsO: To an acetone solution of $\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right)_{3} \mathrm{As}(520 \mathrm{mg}, 1.60$ mol), an excess of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(2 \mathrm{ml})$ was added dropwise with continuous stirring when the pale-yellow colour of the arsine initially darkened and finally turned colourless. This was then thoroughly dried in vacuo to obtain $\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right)_{3} \mathrm{AsO}$ as an off-white paste which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone-hexane mixture to give colourless crystals of (I) ($510 \mathrm{mg}, 94 \%$, m.p. 428 K). Analysis for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~S}_{3}$ AsO: Calcd: C 42.3, H 2.6%; Found C 41.8, H 2.1%. IR: 1456 (vs), 1396 (s), 1377 ($v s), 1331$ (s), 1245 (s), 1231 (s), 1098 (m), 1083 (m), 1066 (m), 994 (s), 984 (s$), 925$ (m$), 892(\mathrm{cs}), 856(\mathrm{~s}), 847(\mathrm{~s}), 748$ (s), $733(\mathrm{~s}), 718$ (vs), 681 (m), 598 (w$), 563(\mathrm{~s}), 477$ (vs$), 398$ (vw$), 351$ (vs), 333 (s), $303(s), 267(m), 246(m), 230(v w) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} \delta: 7.20(d d, 3.7,4.7 \mathrm{~Hz}, \mathrm{H}-4) ; 7.60(d d, 3.6,0.9 \mathrm{~Hz}, \mathrm{H}-3) ; 7.73$ ($d d, 4.8,0.9 \mathrm{~Hz}, \mathrm{H}-5$). $\left.{ }^{13} \mathrm{C}_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR in $\mathrm{CDCl}_{3} \delta: 128.3[\mathrm{C}-4] ; 132.4$ [C2]; 133.8 [C-5]; 135.8 [C-3].

Crystal data

```
\(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{AsOS}_{3}\)
\(M_{r}=340.29\)
Orthorhombic, Pnma
\(a=15.2840\) (4) \(\AA\)
\(b=13.9364\) (4) \(\AA\)
\(c=6.0585(2) \AA\)
\(V=1290.48(7) \AA^{3}\)
\(Z=4\)
\(D_{x}=1.751 \mathrm{Mg} \mathrm{m}^{-3}\)
```


Data collection

Bruker AXS SMART CCD
diffractometer

ω scans

Absorption correction: empirical
(SADABS; Bruker, 2000b)
$T_{\text {min }}=0.481, T_{\text {max }}=0.609$
10145 measured reflections

1958 independent reflections
1893 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-21 \rightarrow 21$
$k=-17 \rightarrow 19$
$l=-6 \rightarrow 8$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.089$
$S=1.09$
1958 reflections
89 parameters
H -atom parameters constrained

$$
\left.\begin{array}{rl}
w= & 1 /[
\end{array} \sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0497 P)^{2}\right)
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

As-O1	$1.648(2)$	S2-C6	$1.695(3)$
As-C1	$1.893(3)$	S2-C5	$1.714(2)$
As-C5	$1.895(2)$		
S1-C2	$1.710(3)$		
S1-C1	$1.716(3)$		$130.4(2)$
O1-As-C1	$112.82(13)$	$\mathrm{C} 4-\mathrm{C} 1-\mathrm{As}$	$117.71(17)$
O1-As-C5	$109.73(8)$	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{As}$	$130.75(17)$
C1-As-C5	$107.73(8)$	$\mathrm{C} 8-\mathrm{C} 5-\mathrm{As}$	$117.92(12)$
C5-As-C5	$109.00(13)$	$\mathrm{S} 2-\mathrm{C} 5-\mathrm{As}$	
C2-S1-C1	$91.89(16)$		
C6-S2-C5	$92.00(12)$		

Symmetry code: (i) $x, \frac{1}{2}-y, z$.

The C-bound H atoms were placed in their geometrically calculated positions and included in the final refinement in the ridingmodel approximation with an overall isotropic displacement parameter.

Data collection: SMART (Bruker, 2000a); cell refinement: SAINT (Bruker, 2000a); data reduction: SHELXTL (Bruker, 2000a); program(s) used to solve structure: DIRDIF92 PATTY (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXTL.

References

Belsky, V. K. \& Zavodnik, V. E. (1984). J. Organomet. Chem. 265, 159-165.
Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Bruker (2000a). SMART, SAINT and SHELXTL. Version V5.6. Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, USA.
Bruker (2000b). SADABS. Version 2.01. Bruker AXS Inc., Madison, Wisconsin, USA.
Etienne, A. (1949). Chem. Abstr. 43, 6102.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Ramsden, H. E. (1960). Chem. Abstr. 54, 17238.
Shao, M., Jin, X., Tang, Y., Huang, Q. \& Huang, Y. (1982). Tetrahedron Lett. 23, 5343-5346.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, T. (2000). PLATON. Utrecht University, The Netherlands.

